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Abstract. We study the influence of filament elasticity on the motion of collective molecular motors. It is
found that for a backbone flexibility exceeding a characteristic value (motor stiffness divided through the
mean displacement between attached motors), the ability of motors to produce force reduces as compared to
rigidly coupled motors, while the maximum velocity remains unchanged. The force-velocity-relation in two
different analytic approximations is calculated and compared with Monte-Carlo simulations. Finally, we
extend our model by introducing motors with a strain-dependent detachment rate. A remarkable crossover
from the nearly hyperbolic shape of the Hill curve for stiff backbones to a linear force-velocity relation
for very elastic backbones is found. With realistic model parameters we show that the backbone flexibility
plays no role under physiological conditions in muscles, but it should be observable in certain in vitro
assays.

PACS. 02.50.Ey Stochastic processes – 05.40.+j Fluctuation phenomena, random processes, and Brownian
motion – 87.22.Jb Muscle contraction, nerve conduction, synaptic transmission, memorization, and other
neurophysiological processes (excluding perception processes and speech)

1 Introduction

Molecular motors play a key role in a variety of biologi-
cal processes like muscle contraction, intracellular trans-
port, cell locomotion, flagellar rotation etc. [1]. Despite
structural similarities, motors can be classified into two
groups according to their function. Processive motors [2],
also called “porters” [3], consist of a single molecule which
can move over long distances along its molecular track
without dissociating from it. The most common proces-
sive motor is kinesin interacting with microtubules. Non-
processive motors, also called “rowers”, can only generate
macroscopic motion when operating in large groups. Mus-
cular myosin, interacting with actin, belongs to this class
of motors. Here we focus on nonprocessive motors.

For many decades exclusively data from physiological
measurements on muscles [4] provided experimental infor-
mation for modeling collective molecular motors [5,6]. In
recent years, a variety of in vitro experimental techniques
allowed the observation of single motor proteins. These ex-
periments include gliding assays [7,8], optical tweezers [9,
10] and micromechanical force measurements [11]. They
allowed for a new insight into the basic principles under-
lying the operation of motors. Not only new theoretical
models for single-molecule motors [12–15] were inspired
by these experiments, but also new models for cooper-
ative motors [3,16,17]. Except for the work by Csahók
et al. [18], which discusses the transport of elastically cou-
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pled particles driven by colored noise, all these models deal
with motors placed on a rigid backbone, interacting with
a rigid track.

The assumption of stiff filaments seems to be appro-
priate under physiological conditions in muscles, since the
measured extensions of few nanometers [19–21] are suffi-
ciently small compared to the myosin step-size, which is
about 10 nm [22]. However, it certainly can become invalid
in gliding assays of the type discussed in reference [7] if an
actin filament glides over widely separated linearly placed
motors [23]. If the spacing between motors is large enough,
the elasticity of the backbone or track section between two
motors can become comparable to the elasticity of a single
motor head. Experiments with myosin molecules bound to
an elastic background are conceivable as well.

It is the purpose of this paper to investigate quali-
tatively and quantitatively the influence of filament elas-
ticity on the operation of myosin-like motors. Our major
quantity of interest is the force-velocity-relation (filament
velocity as a function of the external load). We want to
identify the universal effects of filament elasticity and at
the same time keep the model as close as possible to exper-
iments. The elasticity modeled by linear harmonic springs
may either originate from the flexible backbone or from
the flexible track (Fig. 1). As long as we are dealing with
small relative elongations, both sources of flexibility are
equivalent and our model should apply to both cases. For
specificity we use a formulation with an elastic backbone
and a stiff track.
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Fig. 1. Two possible sources of elastic coupling of collective
molecular motors: elastic backbone (upper figure) and elastic
track (lower figure). Except for very soft backbones/tracks, the
description of both models is equivalent.

Another important component of the model is the
modeling of individual motor heads. Most models describe
the heads by several states with different conformations
and transition rates between them. Such models are based
on early ideas by Huxley [5] and have later been refined in
order to explain more experimental details. More recently
simplified models using a two-state ratchet formalism have
been developed in order to concentrate on generic features
of motion generation [17]. Another class of models describ-
ing Brownian particles in ratchet potentials subject to col-
ored noise, however, seems to be only very distantly re-
lated to motor proteins [24]. We decided to use a two-state
crossbridge model, similar to the model introduced by
Leibler and Huse [3], but with just two long-living states.
It includes the transitions between attached and detached
state and an active power stroke, which have both been
identified as basic elements of the myosin motor [2,6] and
also observed in vitro [10]. Compared to other investiga-
tions [3,5,17] our model also contains a low number of
free parameters, which makes it more suitable for a study
of universal aspects. Yet, adding the strain-dependence of
the detachment rate, the model we use is sufficient to de-
scribe the experimentally measured force-velocity-relation
of actin/myosin in muscles [4]. A more detailed description
of this two-state model can be found in reference [28].

Due to the generic features of such two-state models we
expect that the effects discussed here should as well apply
to other models which contain the same basic mechanisms
of force generation, e.g. [3,17]. However, models of the
type discussed in reference [18], which describe particles
in an asymmetric periodic potential subject to a tempo-
rally correlated noise, are based on a thoroughly different
driving mechanism. Therefore, one expects and actually
finds a variety of disparate effects including a strong influ-
ence of the coupling strength on the velocity even without
external load.

The outline of the paper is as follows. In Section 2 we
introduce the model [26], describe its phenomenological
properties, present the main results and discuss its im-
plications to experiments. The full calculation for strain-
independent detachment rates is shown in Section 3 and
for strain-dependent rates in Section 4.

(i+1)(i)(i-1)

d

Backbone

Track

z L
(α)(α−1) (α+1)

α

Fig. 2. Definition of the model. Motors are fixed on the elastic
backbone at uniform spacing L̄ and attach to the stiff track. zα
denotes the position of α-th motor on the unstrained backbone.
Due to the conformational change, the head of each motor
attaches at the distance d from its root.

2 Discussion

2.1 Description of the model

We consider a one-dimensional model describing many
motors which produce force between two filaments gliding
past each other. The force is generated by a conforma-
tional change (“power stroke”) in the molecular motors
fixed to the backbone, which takes place after they attach
to the molecular track (Fig. 2). We assume that the mo-
tor proteins can be found in two states: attached to and
detached from the track. This corresponds to taking into
account only the two long-living states in the model used
by Leibler and Huse [3]. The transitions between these
two states occur stochastically. We denote the mean life
time of the attached state by ta and of the detached state
by td. Each attached motor is described as a harmonic
spring connecting its root at the backbone (position y)
and its head on the track (position x). The force this mo-
tor produces between the track and the backbone is given
as k(x−y), with a spring constant k. Since the motor is in
a forward leaning position before attachment (see Fig. 2),
it attaches to the track at the point xn, which is the posi-
tion y of the root of the motor before attachment, shifted
by the displacement d (“power stroke”)

xn = y + d. (2.1)

We neglect thermal fluctuations and the discreteness of
binding sites on the track. This is motivated by our recent
results for rigid backbones [28], where we find that discrete
binding sites (with a spacing of 5.5 nm) as well as thermal
fluctuations have only a minor effect on the resulting force-
velocity-relation.

While assuming a stiff track, we model the backbone as
a linear spring with compliance γ−1 per unit length. But
note that this is merely a convention. Our results apply
equally well to the reverse situation, where the molecular
motors are fixed on a (rigid) cover slip and the elastic-
ity is due to the molecular track transported by them.
We consider N̄ motors placed on the backbone at uniform
spacing L̄, so that the total backbone length is N̄L̄. Note
that the assumption of uniform spacing is made solely for
simplicity. Any other distribution which is homogeneous
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αx

z yα α Fig. 3. The moving backbone (solid line) and
its initial position at time t = 0 (dashed line).
yα denotes the root position of the α-th motor,
relative to its initial value (zα). xα denotes the
head position of the α-th motor, also relative
to the initial position of the α-th root, zα.

on length scales L would lead to the same exponential dis-
tribution of gap widths (see Eq. (2.3) below). The position
of the α-th motor on the unstrained backbone will be re-
ferred to as zα. In the following, the actual positions of
motor heads xα(t) and of motor roots yα(t) are measured
relative to zα (Fig. 3).

Instead of using the quantities N̄ and L̄ it will prove
helpful to use the mean number of attached motors N =
N̄ta/(ta + td) and the mean spacing between two attached
motors L = L̄(ta + td)/ta. Since for now we are dealing
with strain-independent reaction rates the distribution of
attached and detached states does not depend on the mo-
tion of their positions. The probability of finding a gap
with α detached motors between two attached ones is
given by the geometric distribution

pα =

(
td

ta + td

)α
ta

ta + td
· (2.2)

In order to keep the model as lucid as possible we assume
a small duty ratio [2], meaning that a motor molecule
spends most of its time in the detached state, ta � td.
Since we are dealing with nonprocessive motors (“row-
ers” [3]), this assumption is certainly valid. While keeping
the mean number N of attached motors and their average
spacing L constant, we consider the limit L̄ → 0. With
this simplification the model becomes continuous. Also,
the assumption about equidistantly placed motors on the
backbone becomes superfluous in this limit. The distribu-
tion of motors is insignificant as long as it is sufficiently
homogeneous on the length scale L. The attachment rate
per length L (between the positions z and z + L on the
backbone) obeys ra = L/L̄td = 1/ta. The distribution of
gap widths (2.2) takes the form of an exponential distri-
bution

p(l) =
1

L
e−l/L. (2.3)

2.2 Results

In this subsection we summarize our main results for the
analysis of the model described above; the details of the
calculation are given later in Section 3.

As described by now the model contains seven indepen-
dent parameters: ta, N , L, F , k, γ and d. Upon measuring
the force per motor, F/N , in units of the force during one
power stroke, kd, and measuring the backbone elasticity
per unit length, γ/L, in units of the motor head elastic-
ity, they may be reduced to two adimensional parameters:
F̂ = F/Nkd and γ̂ = γ/kL. Then the velocity in units of
a single motor velocity v̂ = vta/d is given by a “scaling”

function v̂ = η(F̂ , γ̂).
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Fig. 4. Force-velocity-relation for the stiff (γ =∞) and elastic
(γ = kL) backbone.

As shown in Section 3 we find that in case of a time-
independent external force it does not matter whether this
force pulls on one end or homogeneously on the whole
backbone with a density f = F/NL. A quite remarkable
result of our analysis is that the force-velocity relation re-
mains linear for flexible backbones and that the zero load
velocity d/ta does not depend on the backbone elastic-
ity. The force-velocity relations for a stiff and an elastic
backbone are shown in Figure 4.

If the relative backbone stiffness γ̂ lies below 1, the
slope of the force-velocity curve and consequently the stall
force differ significantly from those for a stiff backbone
(Fig. 5). While the stall force fstall is proportional to the
motor stiffness (fstall = kd/L) for stiff backbones, it be-
comes a function of backbone stiffness for very flexible
backbones and is given as 2γd/νL2. Here ν is a numerical
constant which has the value ν ≈ 1.64 as obtained from
the Monte-Carlo simulation. Using analytical tools based
on a Master-equation approach with correlations between
the position of a motor and the distances to its neighbors,
we obtain the value ν ≈ 1.50, which is in good agree-
ment. For completeness Figure 5 also shows the result of
a Master-equation without correlations, yielding ν = 1.

Finally, we extend the model described in Section 2.1
by introducing a strain-dependent detachment rate. This
extension is inevitable for a quantitative comparison with
experiments on the actin-myosin system. We already men-
tioned that (with or without backbone elasticity) strain-
independent transition rates lead to a linear force-velocity-
relation. However, since the very beginning of muscle re-
search it has been known that the force-velocity-relation
rather has a hyperbolic form, also called the Hill curve
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Fig. 5. The slope of the force-velocity relation (coefficient C2

in Eq. (3.16)), as a function of the relative backbone stiffness
γ/kL: MC-simulations (stars), analytic approximation without
correlations (lower curve), with correlations to the distances to
nearest neighbors (upper curve). In both analytic curves the
numeric result for k〈1/Ke〉 from Figure 9 was used.

[4]. It has also been known that the energy liberation in a
stretching muscle depends on velocity, which is also called
the Fenn effect [27]. The most natural way to reproduce
these physiological measurements is the introduction of a
strain-dependent detachment rate, meaning that the life-
time of the attached state ta = ta(xi−yi) is larger for those
heads that have just gone through the power stroke and
produce maximum force than for those which have already
done their work and now pull backwards. As a consequence
the duty ratio becomes lower at higher velocities. This
idea has already been used by Huxley [5]. Although there
is some direct experimental evidence for strain-dependent
detachment rates [10], the functional form of this depen-
dence has not been measured yet. For simplicity we model
this dependence as an exponential ta(ξ) = exp(αξ), which
suffices to fit the force-velocity-relation [4]. However, we
stress that this is only a first approximation and that other
forms are possible as well. Further experimental informa-
tion is highly desirable for a future more detailed modeling
of molecular motors.

Some other functional forms of the detachment rate
(e.g. ta(ξ) ∝ ξ−2) lead to anomalous force-velocity-
relations already with rigid backbones [28]. These can lead
to oscillations, similar to those proposed by Jülicher and
Prost [29]. We expect that flexible backbones can lead to
additional phenomena like wave generation.

Strain-dependent detachment rates enhance the dif-
ficulty of an analytic solution of our model enormously,
since the distribution of attached and detached motors
depends on the distribution of head positions (xi). There-
fore, we will mainly use Monte-Carlo simulations and
restrict analytic arguments on limiting cases. The simula-
tions show that two major analytic results of the strain-
independent case carry over to the strain-dependent case:
(i) If the backbone flexibility exceeds its characteristic
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Fig. 6. Monte-Carlo results for force-velocity-relations with
strain-dependent detachment rates (αd = 0.5) and different
backbone stiffnesses. Note the crossover from the Hill curve at
stiff backbones to a nearly linear relation at soft backbones.

value, the stall force decreases strongly. (ii) The back-
bone flexibility has only little influence on the zero-load
velocity.

For stiff backbones (γ/kL � 1) the force-velocity-
relation as measured by Hill [4] is reproduced perfectly
using the value αd = 0.58. For decreasing backbone stiff-
ness (γ/kL � 1) the stall force decreases and the force-
velocity-curve becomes increasingly linear. This can be
understood as follows: the forces which lead to positive
velocities become smaller and so does the strain on sin-
gle motors. The small strain does not have any significant
influence on the detachment rate any more and the re-
sults obtained for a strain-independent detachment rate
become exact. The crossover from the Hill curve to a lin-
ear relation is shown in Figure 6. There αd = 0.5 is used,
but the curves would look qualitatively similar for other
positive values.

2.3 Implications for experiments

In order to apply our theory to experiments, we need
the spring constants of the myosin heads and of the
actin filaments. The elasticity of the attached myosin
head was measured by Finer et al. [22] with the result
k = 0.4 pN/nm (measurements by Ishijima et al. [30] yield
k = 0.28 pN/nm, which is in quite good agreement).

In our model we assumed springs with flexibility pro-
portional to their length, obeying kspring = γ/L. Actually
actin is a semiflexible polymer. Its elastic behavior was
subject of many theoretical and experimental studies in
last years [31–35]. There are essentially two contributions
to the elasticity of actin: the longitudinal elastic modulus
and the buckling of the polymer, induced through thermal
fluctuations.

At very high loads, the stiffness is limited by the elastic
modulus of actin and is proportional to L−1. For a filament
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of length 1µm the stiffness is about 44 pN/nm [35]. In
this regime, the characteristic distance between attached
motors can be estimated as Lch = γ/k ≈ 100 µm. In this
case backbone flexibility is of no experimental relevance.

At low tension, the buckling modes limit the stiffness
of actin. In the linear response approximation, the stiffness
of a polymer with length L obeys the law

kpolymer = 90kBT`
2
pL
−4 (2.4)

where `p denotes the persistence length. Although we as-
sume springs obeying an L−1-law, we can still use the
L−4-law to give an estimate for the characteristic distance
for which kpolymer(Lch) ≈ k.

Recent measurements provide the value `p = 7.4 µm
[36]. With these values we finally estimate the char-
acteristic distance between attached motors Lch =
(90kBT`

2
p/k)1/4 ≈ 500 nm. If the mean displacement be-

tween attached motors is larger than Lch, we expect that
the effects of backbone elasticity should be observable. A
simulation with springs obeying the L−4-law (2.4) is in
preparation.

In muscles 500 nm is about the length of a half sar-
comere [1,37]. A rough estimate (300 myosin heads in one
thick filament, 3 actin filaments per one thick filament,
2.5−10% of heads in the attached state) leads to L values
between 50 nm and 200 nm, significantly below the char-
acteristic length Lch. This implies that the elasticity of
actin filaments does not influence the operation of muscles.
This result is not surprising – backbone elasticity always
reduces the efficiency of motors and it would be hard to
understand why muscles spoil their high efficiency in such
a prodigal way.

3 Analytical solution

In this section the calculation leading to the force-velocity-
relation for strain-independent detachment rates is given.
This is done in several steps: first we show that the model
behaves equivalently if a force acts on one end of the fil-
ament or homogeneously along the whole length. As sec-
ond we calculate the effective compliance of a semi-infinite
chain, which is an important input quantity for later use.
Then we show the linearity of the force-velocity-relation,
show that the zero-load velocity does not differ from its
value for stiff backbones and finally calculate its slope in
two different approximations.

A generic situation found in many experimental setups
is that a force F , usually produced by an optical tweezer,
acts on the rear end of the backbone. Another possibility is
to produce the force by a viscous liquid, flowing along the
backbone. Such a force acts more or less homogeneously
on the whole backbone. In both cases the main quantity of
interest is the resulting mean backbone velocity depend-
ing on the load F . In the following we show that both
situations are equivalent within the scope of a theoretical
description.

3.1 Point force

From now on we use the index i, which runs over attached
motors only, instead of the index α, running over all mo-
tors. xi and yi denote the head and root positions of i-th
attached motor relative to its initial position on the un-
strained backbone (zi) at time t = 0. The stiffness of the
backbone fragment between the motors i and i+ 1 equals
γ/(zi+1 − zi). At the point where the i-th motor is fixed
to the backbone, the sum of the all three forces (from the
motor, from the left part of the backbone and from the
right part of the backbone) must be zero:

k(xi − yi)− γ
yi − yi−1

zi − zi−1
+ γ

yi+1 − yi
zi+1 − zi

= 0, (3.1a)

k(x1 − y1) + γ
y2 − y1

z2 − z1
= F. (3.1b)

The second equation describes the first attached motor
and differs from the others since the backbone force acting
from the left is replaced by the external force F . With
given xi and zi this set of equations allows us to determine
the values of yi.

The detachment rate equals t−1
a for each motor. The

detachment of one motor is described by canceling its po-
sition in the set of x- and z-values. Afterwards, all the
y-values are determined anew from equation (3.1).

The process of attachment occurs at the rate N/ta
and consists of choosing a random position zn between
0 and NL, calculating the corresponding y(zn) (the root
position of the new motor before attaching) and xn =
y(zn) + d, and finally adding a new motor with its head
at xn and its root at zn. Again, all the y-values have to
be recalculated as stated by equation (3.1). Expressing
y(zn) through the positions of the neighbors (the index
“−” describes the first attached motor on the left and
“+” on the right hand side) yields

xn = yn + d =
y−(z+ − zn) + y+(zn − z−)

z+ − z−
+ d. (3.2)

3.2 Equivalence to the model with a homogeneous
force

In the model described by now, the external force acts on
one end of the backbone. This leads to some difficulties,
e.g. one can only consider a semi-infinite chain with one
boundary condition. Furthermore, the resulting solutions
are not translationally invariant since the strain decreases
along the backbone.

Replacing the point force by a homogeneous one acting
on the whole backbone with a density f = dF/dz would
allow us to perform the calculation on an infinite chain of
completely equivalent motors. The ability to use periodic
boundary conditions in the Monte-Carlo-simulation would
be an additional advantage.

Fortunately, both models, i.e. with a point force and a
homogeneous force are actually equivalent. It is instructive
to show this equivalence in the continuum formulation of
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Fig. 7. Transformation from the model with a point force
to the model with a continuous force, given through equa-
tion (3.5), on a typical configuration during the motion. The
circles represent attached motors, the detached ones lie on the
line. z denotes the position a motor would have on an un-
strained backbone, y its root position relative to z (Fig. 3).

the model. Instead of the discrete set of variables yPi we
use a function yP (z). The continuum representation of
equation (3.1) is given by the following set of equations

γ
d2yP

dz2
= −

∑
i

δ(z − zi)k(xPi − y
P (zi)), (3.3a)

γ
dyP

dz

∣∣∣∣
z=0

= F. (3.3b)

The first equation expresses the constant tension between
the attached motors with jumps at the positions where the
motor roots are placed. The second equation describes the
strain at the boundary of the backbone.

On the other hand, in the homogeneous force model
the strain grows linearly with z

γ
d2yH

dz2
= f −

∑
i

δ(z − zi)k(xHi − y
H(zi)). (3.4)

Since we are dealing with a force constant in time and with
quasistationary solutions, we can show that both mod-
els are equivalent up to a transformation which shifts the
heads and roots of motors, depending on their z position.
As may be easily verified by comparing equations (3.3,
3.4), the following transformation{

xHi
yHi

}
=

{
xPi
yPi

}
+

f

2γ
(NL− zi)

2 (3.5)

with F = NLf preserves the properties of the model.
The transformation is shown schematically in Figure 7.
After having shown the equivalence of both models, we
can return to the original formulation. The transformed
equations (3.1, 3.2) become (in the following we omit the

F

l21 l1y

Fig. 8. Effective spring constant of a semi-infinite chain with
randomly distributed displacements between bridges.

index H)

k(xi − yi)− γ
yi − yi−1

zi − zi−1
+ γ

yi+1 − yi
zi+1 − zi

− f
zi+1 − zi−1

2
= 0

(3.6)

and

xn =
y−(z+ − zn) + y+(zn − z−)

z+ − z−

+d−
f

2γ
(z+ − z

n)(zn − z−). (3.7)

The additional term represents the displacement of a uni-
formly loaded spring, tightly bound at its ends at z− and
z+. Of course, these equations also follow directly from
equation (3.4).

3.3 Effective compliance of a semi-infinite chain

A quantity frequently needed during the analytical solu-
tion of the model described in Section 2 is the elasticity
of a semi-infinite stochastic chain as shown in Figure 8. It
is defined as

1

Ke
= −

dy1

dF

∣∣∣∣
xi=const

(3.8)

where y1 is a part of the solution of equation (3.1). As
defined in Section 2, the spring constant of the motors is
given by k. The values of li are distributed randomly with
average L and the exponential distribution (2.3).

The compliance of a chain with a given configuration
(given li-values) can be calculated recursively. The chain is
built up of a spring with stiffness k, connected in parallel
to two other springs, which themselves are connected in
series. The first one describes the piece of backbone with
elasticity γ/l1. The second spring is again a replacement
for another semi-infinite chain starting with the second
motor. We denote its stiffness as K ′e

Ke = k +
1

l1
γ

+ 1
K′e

· (3.9)

Repeating the same procedure for K ′e etc. and finally av-
eraging over all configurations (l1, l2, . . . ) with their sta-
tistical weights yields〈

1

Ke

〉
=

∞∫
0

dl1p(l1)

∞∫
0

dl2p(l2) . . .
1

k + 1
l1
γ + 1

k+ 1
l2
γ

+ 1
k+ 1
···

·

(3.10)
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Fig. 9. The effective compliance of a semi-infinite chain
k〈1/Ke〉. Thick line: Monte-Carlo result. Thin line: approxima-
tion given by equation (3.12). Dashed line: the ratio between
the Monte-Carlo result and the approximation.

The convenient way to solve this high-dimensional inte-
gral, however, is by using the Monte-Carlo method. Its
result is shown in Figure 9.

One possibility to give an analytic approximation for〈
K−1
e

〉
is the use of a mean-field like theory by assuming

that all displacements li are exactly equal to their mean
value L. Then the above expression becomes self-similar
and we obtain the recursion relation〈

1

Ke

〉
=

1

k + 1
L
γ +〈 1

Ke
〉

(3.11)

with the solution〈
1

Ke

〉
=

L

2γ

(√
1 + 4

γ

kL
− 1

)
. (3.12)

In Figure 9 the approximation, equation (3.12), is plotted
against the (exact) Monte-Carlo solution of (3.10). The
deviations lie below 10% over the entire parameter range.
The approximation becomes exact for both very soft and
very rigid backbones. In the case of large γ this is due to
the fact that the long-range coupling makes the detailed
distribution of li irrelevant. The case of low γ is trivial
since the motors get decoupled and the stiffness of the
chain is determined solely by the first motor (

〈
K−1
e

〉
= 1

k ).

3.4 Linearity of the force velocity relation

For rigidly coupled motors it was already shown in [3]
that the velocity is linear in the applied force f as well
as in the step size d. In the following we present a simple
argument why this remains valid for elastically coupled
motors. We denote the number of currently attached mo-
tors by n and their positions on the backbone by a vector

x containing the components x1 . . . xn. From the struc-
ture of equations (3.6, 3.7) it is evident that the process
of attachment can be described by the following equation

x(i+1) = Ax(i) + u1
fL

k
+ u2d (3.13)

where the (n+ 1, n)-matrix A and the (n+ 1)-vectors u1

and u2 depend in a complex way on {zi} and γ/Lk. The
detachment of one head is described by another (n−1, n)-
matrix A as

x(i+1) = Ax(i). (3.14)

After a series of consecutive attachments and detachments
this gives

x(i) = Ãx(0) + ũ1
fL

k
+ ũ2d. (3.15)

Finally we set x(0) = 0 and calculate the mean motor
position 〈x〉 = tr (x/n). Since the time needed for i steps
is proportional to ta, we obtain the relation

v =
1

ta

(
C1d− C2

fL

k

)
, (3.16)

which is linear in d and in f . The constants C1 and C2 get
independent of the mean number of motorsN for N →∞.

The force-velocity-relations for the elastic and for the
stiff backbone are compared in Figure 4. Due to the lin-
earity of the force-velocity relation the problem can be
separated in two parts: determining the backbone veloc-
ity without external forces (f = 0) and the velocity with
external force but without power strokes (d = 0). The
remaining work consists of determining the constants C1

and C2.

3.5 Master-equation

An adequate description of the model is given by
P (. . . , l2, l1;x, t; r1, r2, . . . ), the probability density to find
a head at position x and with distances l1 ≡ zi− zi−1 and
r1 ≡ zi+1 − zi to its nearest attached neighbors, the dis-
tances l2 ≡ zi−1 − zi−2 and r2 ≡ zi+2 − zi+1 between
the nearest and the next nearest attached neighbors etc.
Of course, this distribution varies with time. Because the
problem is linear in x and y, there is no need for deter-
mining the correlations between the positions of different
motor heads on the track. P can be expressed by

P (. . . , l2, l1;x, t; r1, r2, . . . ) =

P (x, t)... ,l2,l1;r1,r2,...p(. . . , l2, l1; r1, r2, . . . ). (3.17)

The second factor describes the probability for a motor to
have the distances l1, r1, l2, r2, . . . to its neighbors. In a
steady solution it is given by equation (2.3)

p(. . . , l2, l1; r1, r2, . . . ) =
e−l1/L

L

e−r1/L

L

e−l2/L

L
. . .

(3.18)
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Fig. 10. Attachment of a new head.

The first factor gives the distribution of the head positions
x for the given set of distances. Since the transition rates
are constant (strain-independent), the first factor does not
influence the second one.

We describe the temporal development of P in terms of
a Master equation. The detachment of motors is described
as drain, attachment as source. Additional terms result
from the fact that the attachment/detachment of a motor
also changes the l and r-values in its neighborhood.

The detachment rate is equal to the probability density
divided through the mean life time of the attached state

rd(. . . , l2, l1;x, t; r1, r2, . . . )

=
1

ta
P (. . . , l2, l1;x, t; r1, r2, . . . ). (3.19)

Once the distribution of z-values (p(. . . , l2, l1; r1, r2, . . . ))
is in equilibrium, the attachment and detachment rate in-
tegrated over x have to be equal. They can only differ
in the x-dependence. Thus we write the attachment rate
the same way as the detachment rate except for a differ-
ent factor containing the distribution of x-positions of the
newly attached heads.

ra(. . . , l2, l1;x, t; r1, r2, . . . )

=
1

ta
p(. . . , l2, l1; r1, r2, . . . )P

n(x, t)... ,l2,l1;r1,r2,...

(3.20)

The x-distribution of attaching motors depends on the x-
distributions of all the neighbors. It is determined as the
integral over all (properly weighted) configurations which
lead to a motor attachment at position xn:

Pn(x, t)... ,l2,l1;r1,r2,... = . . .

∫
dxl1P (xl1, t)... ,l3,l2;l1,r1...

×

∫
dxr1P (xr1, t)... ,l1,r1;r2,r3... . . . δ (xn(. . . , xl1, xr1, . . . )− x) .

(3.21)

As follows form equation (3.7), xn can be expressed
through yl1 and yr1

xn =
yl1r1 + yr1l1

l1 + r1
+ d−

f

2γ
lr, (3.22)

which again are functions of all xi and can be determined
through equation (3.6). The full Master equation is given
in Appendix A.

3.6 Zero load backbone velocity

In the special case of zero external load (f = 0) one can
see that as long as the expectation value 〈x〉... ,l2,l1;r1,r2,...

is independent of the distances li and ri, i.e.∫
dxxP (x, t)... ,l2,l1;r1,r2,... = 〈x〉, (3.23)

the same holds for yi (determined from (3.6)) and for xn,
which follows from equation (3.22)

〈xn〉 = 〈y〉+ d = 〈x〉+ d. (3.24)

In other words, if the average head position of the existing
attached motors is not correlated to the distances between
them, the position where the head of a new motor attaches
is uncorrelated too. Thus we have shown self-consistently
that 〈x〉... ,l2,l1;r1,r2,... does not depend on li and ri. The
equation of motion (A.2) for the expectation value of x
simplifies to

v ≡
d

dt
〈x〉 =

1

ta
(〈xn〉 − 〈x〉) =

d

ta
· (3.25)

This means

C1 = 1 (3.26)

for the first coefficient in equation (3.16). The interesting
point in this result is that it is independent of the back-
bone elasticity. As long as there is no external force, the
velocity remains the same as in the case of a rigid back-
bone, this is v(f = 0) = d/ta.

3.7 Slope of the force-velocity curve (correlations
neglected)

In the previous section we have shown that in the case of
zero external force the average x-position of a motor stays
uncorrelated to the distances to its attached neighbors,
which made the calculation of the force-velocity relation
pretty easy. In the case of nonvanishing external forces
(behavior described by the coefficient C2 in Eq. (3.16)),
the correlation doesn’t vanish any more. However, as a
first approximation we may still try to neglect it. Later we
will take correlations with distances to the nearest neigh-
bors into account and show that they improve the result
significantly.

The solution is analog to the previous section, except
that we set d = 0 and f 6= 0 in equation (3.22). Another
difference is that the average y-value differs from the av-
erage x-value by the mean force per attached motor (fL),
divided through the motor stiffness k

〈y〉 = 〈x〉 −
fL

k
· (3.27)

Instead of this rather intuitive argument this equation can
also be derived directly from equation (3.6) by summation
over i.
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This equation describes the y-position, averaged over
all motors. However, the quantities needed in equa-
tion (3.22) are the expectation values of yr1 and yl1 (mo-
tors at the edge of a gap whose distance to one neighbor is
l1 + r1 and to the other neighbor randomly distributed).
Even with uncorrelated x-values the expectation values
〈yl1〉 and 〈yr1〉 are not the same as 〈y〉.

For a gap width equal to the mean distance between
attached motors both quantities will not differ. Otherwise
the average value of the y-positions beneath a gap of width
l1 +r1 differ from 〈y〉 by the excess force acting on the gap
between them (f(l1 + r1)) compared to the force on the
average gap (fL), multiplied by the effective compliance
of a semi-infinite chain (Sect. 3.3)

〈yl1〉 = 〈yr1〉 = 〈y〉 − f

〈
1

Ke

〉
l1 + r1 − L

2
· (3.28)

The denominator 2 describes the fact that the force is
distributed equally to both edges.

The mean x-position of the newly attached motor fol-
lows by combining equations (3.22, 3.27, 3.28):

〈xn〉l1;r1 = 〈x〉 − f

(〈
1

Ke

〉
l1 + r1 − L

2
+
L

k
+
l1r1

2γ

)
.

(3.29)

Since we want to neglect correlations between 〈x〉 and
(li, ri), we average over l1 and r1 (〈l1〉 = 〈r1〉 = L)

〈xn〉 = 〈x〉 − f

(〈
1

Ke

〉
L

2
+
L

k
+
L2

2γ

)
. (3.30)

In analogy to the previous section the final result for the
dimensionless coefficient C2 is

C2 =

(
k

2

〈
1

Ke

〉
+ 1 +

kL

2γ

)
. (3.31)

The result is shown in Figure 5. In the limit of very soft
backbones (γ � kL) the stall force becomes fstall =
2dγ/L2, which is independent of the motor stiffness k. Our
Monte-Carlo simulations show this behavior, however with
a different prefactor, which results from the correlations
which were neglected in this approximation,

fstall =
2dγ

νL2
(3.32)

d

dt
〈x(t)〉p(λ1; ρ1) =

1

ta

∫
dl1

∫
dr1 . . . p(. . . , l1; r1, . . . )

[
−(〈x(t)〉 − (fL/k)µ (l1/L; r1/L)) (δ(λ1 − l1)δ(ρ1 − r1))

+(〈x(t)〉 − (fL/k)µ (l2/L; l1/L))(−δ(λ1 − l2)δ(ρ1 − l1) + δ(λ1 − l2)δ(ρ1 − (l1 + r1)))

+(〈x(t)〉 − (fL/k)µ (r1/L; r2/L))(−δ(λ1 − r1)δ(ρ1 − r2) + δ(λ1 − (l1 + r1))δ(ρ1 − r2))

+ 〈xn(t)〉l1;r1
(δ(λ1 − l1)δ(ρ1 − r1))

+(〈x(t)〉 − (fL/k)µ (l2/L; (l1 + r1)/L) (−δ(λ1 − l2)δ(ρ1 − (l1 + r1)) + δ(λ1 − l2)δ(ρ1 − l1))

+(〈x(t)〉 − (fL/k)µ ((l1 + r1)/L; r2/L))(−δ(λ1 − (l1 + r1))δ(ρ1 − r2) + δ(λ1 − r1)δ(ρ1 − r2))
]
,

(3.37)

with ν ≈ 1.64.

3.8 First-order correlations

Contrary to the previous subsection where we neglected
the correlation between the position x of a motor and the
distances to its neighbors by using the ansatz (3.23), we
now extend the calculation by taking correlation with dis-
tances to nearest neighbors into account. We replace the
approximation (3.23) by introducing a function describing
these correlations∫

dxxP (x, t)... ,l2,l1;r1,r2,... = 〈x(t)〉 −
fL

k
µ

(
l1

L
;
r1

L

)
.

(3.33)

The function µ is scale invariant. It has to fulfill the con-
dition ∫

dl1

∫
dr1p(l1; r1)µ

(
l1

L
;
r1

L

)
= 0. (3.34)

This also means that the head positions of the motors
limiting a gap of width l1 + r1 already differ from 〈x〉

〈x〉l1+r1; = 〈x〉 −
fL

k

∫ ∞
0

dr2 p(r2)µ

(
l1 + r1

L
;
r2

L

)
.

(3.35)

The equation (3.28) has to be extended by a term de-
scribing this influence. Since the roots of the motors are
connected to their heads via elastic constants k and to the
rest of the track via effective constants Ke − k, the cor-
rection in y corresponds to the x-correction attenuated by
the factor k/Ke. Finally, the refined equation (3.29) reads

〈xn〉l1;r1 = 〈x〉 − f

(〈
1

Ke

〉
l1 + r1 − L

2
+
L

k
+
l1r1

2γ

)
+ k

〈
1

Ke

〉(
〈x〉l1+r1; − 〈x〉

)
. (3.36)

The correlation to farther neighbors is still neglected. This
is expressed in the simplified equation of motion which is
obtained by integrating both sides of (A.2) over all λi≥2

and ρi≥2

See equation (3.37) below
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Fig. 11. The function µ(λ; ρ) at γ/kL = 1.

which leads to an integral equation for µ and v. Its scale
invariant form, using the coefficient C2 = vtak/f , is

C2 =− 3µ(λ; ρ) +

ρ∫
0

µ(λ;α)dα +

λ∫
0

µ(α; ρ)dα

+

(
k

〈
1

Ke

〉(
λ+ ρ− 1

2

)
+ 1 +

λρ

2

kL

γ

)

+ k

〈
1

Ke

〉 ∞∫
0

e−αµ(λ+ ρ;α)dα − (λ+ ρ)µ(λ; ρ)

+

∞∫
0

e−αµ(λ; ρ+ α)dα +

∞∫
0

e−αµ(λ+ α; ρ)dα.

(3.37)

A self-consistent solution that holds for all λ and ρ can
be calculated numerically. The resulting coefficient C2 is
shown in Figure 5 and a typical shape of the µ-Function
in Figure 11. The correction ν, defined in (3.32), gets the
value ν ≈ 1.50. Taking first-order correlations into account
improved the agreement between theory and simulation
significantly. The remaining deviation, due to neglected
correlations with further neighbors, is about 9% at low γ
and lies below 14% over the entire parameter range.

4 Strain-dependent detachment rates

4.1 Stiff backbone

A backbone with infinite stiffness (γ → ∞) means that
the motor roots always keep their relative positions to
each other, yi ≡ y for all motors i. In this case the posi-
tions of motor roots zi naturally play no role. The Master
equation (A.1) for the z-independent probability density
P (x, t) reduces to

d

dt
P (x, t) = −rd(x) + ra(x) (4.1)

with rd(x) = P (x)/ta(x−y), ra(x) = δ(x−y−d)L/L̄td, as
follows from equations (3.19–3.22). The backbone position
y is determined from equation (3.6), summed over i:

k

∫
(x− y)P (x)dx = fL. (4.2)

Note that the norm of the distribution P gives the mean
number of attached motors per length L, which, contrary
to previous sections, is not necessarily equal 1. Quasista-
tionary solutions of (4.1) are found with the ansatz

P (x, t) = Φ(x− y), y = vt, (4.3)

leading to

−v∂ξΦ(ξ) = −
1

ta(ξ)
Φ(ξ) +

L

L̄td
δ(ξ − d). (4.4)

This equation is analytically solvable. For v > 0 the non-
divergent solution is

Φ(ξ) =
L

vL̄td
exp

(
−

∫ d

ξ

dξ′

vta(ξ′)

)
θ(d − ξ). (4.5)

Finally, the force-velocity relation can be obtained
through (4.2) f = k

∫
ξΦ(ξ)dξ/L. The stall force is given

as

f(v = 0) = kd
ta(d)

L̄td
· (4.6)

For simplicity reasons, we model the strain-dependence of
the detachment rate as an exponential function

ta(ξ) = ta exp(αξ). (4.7)

The form of the force-velocity-relation, which was first
measured by Hill [4], is fitted perfectly with αd = 0.58.
Therefore, we use αd = 0.5 in the following.

4.2 Elastic backbone

In Section 3 we showed that for very flexible backbones
(γ/kL� 1) and strain-independent reaction rates (α = 0)
the zero-load velocity remains d

ta
, while the stall force is

limited through the backbone stiffness as f(v = 0) =
2γd/νL2. The mean strain on a motor is given as 〈ξ〉 =
fL/k, or 2γd/νkL at maximum load. For very flexible
backbones this means α 〈ξ〉 � 2αd ≈ 1. The strain-
dependence becomes negligible and the results from Sec-
tion 3 are exact. From this simple argument we expect that
the force-velocity relation becomes linear. The crossover
from the hyperbolic to the linear shape takes place at
γ/kL ≈ 1. While the stall force (force at zero velocity)
fstall = eαdkd/L is limited through the motor stiffness
k for stiff backbones, it depends solely on the backbone
stiffness for soft backbones, fstall = 2γd/νL2. This behav-
ior is in agreement with our Monte-Carlo simulations, the
results are shown in Figure 6.
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Appendix A: Master-equation

In equation (3.17) we separated the probability den-
sity into a part depending on the distances between the
z-values (li and ri) and another part containing the
x-positions of motors. Then we determined the attach-
ment and detachment rates (3.19, 3.20). Now we describe
the temporal development of P in terms of Master equa-
tions. The detachment/attachment of one specific site
leads to destruction respectively creation of the following
states (see also Fig. 10):

Detachment

destroyed created

(. . . , l2, l1;x; r1, r2, . . . )
(. . . , l3, l2;xl1; l1, r1, . . . ) (. . . , l3, l2;xl1; l1 + r1, r2, . . . )
(. . . , l1, r1;xr1; r2, r3, . . . ) (. . . , l2, l1 + r1;xr1; r2, r3, . . . )

...
...

Attachment

destroyed created

(. . . , l2, l1;xn; r1, r2, . . . )
(. . . , l3, l2;xl1; l1 + r1, r2, . . . ) (. . . , l3, l2;xl1; l1, r1, . . . )
(. . . , l2, l1 + r1;xr1; r2, r3, . . . ) (. . . , l1, r1;xr1; r2, r3, . . . )

...
...

The transition rates are given by equations (3.19, 3.20). The Master equation for P is

d

dt
P (ξ, t)... ,λ2,λ1;ρ1,ρ2,...p(. . . , λ1; ρ1, . . . ) =∫
dx

∫
dl1

∫
dr1 . . .

[
rd(. . . , l2, l1;x, t; r1, r2, . . . )

(
−δ(ξ − x) (· · · δ(λ1 − l1)δ(ρ1 − r1) · · · )

+ P (x, t)... ,l3,l2;l1,r1...(− · · · δ(λ2 − l3)δ(λ1 − l2)δ(ρ1 − l1) · · ·+ · · · δ(λ2 − l3)δ(λ1 − l2)δ(ρ1 − (l1 + r1))δ(ρ2 − r2) · · · )

+ P (x, t)... ,l1,r1;r2,r3...(−· · · δ(λ2 − l1)δ(λ1 − r1)δ(ρ1 − r2) · · ·+ · · · δ(λ2 − l2)δ(λ1 − (l1 + r1))δ(ρ1 − r2)δ(ρ2 − r3) · · · )

...)
+ ra(. . . , l2, l1;x, t; r1, r2, . . . )

(
δ(ξ − x) (· · · δ(λ1 − l1)δ(ρ1 − r1) · · · )

+ P (x, t)... ,l3,l2;l1+r1,r2...(−· · · δ(λ1 − l2)δ(ρ1 − (l1 + r1))δ(ρ2 − r2) · · ·+ · · · δ(λ1 − l2)δ(ρ1 − l1)δ(ρ2 − r1) · · · )

+ P (x, t)... ,l2,l1+r1;r2,r3...(−· · · δ(λ2 − l2)δ(λ1 − (l1 + r1))δ(ρ1 − r2) · · · a+ · · · δ(λ2 − l1)δ(λ1 − r1)δ(ρ1 − r2) · · · )

...)]
. (A.1)

Rather than in the distribution itself we are interested in the expectation value 〈x(t)〉... ,l2,l1;r1,r2,...
. Its equation of

motion follows directly form the Master equation.

d

dt
〈x(t)〉... ,λ2,λ1;ρ1,ρ2,...p(. . . , λ1; ρ1, . . . ) =

1

ta

∫
dl1

∫
dr1 . . . p(. . . , l2, l1; r1, r2, . . . )

×
[
−〈x(t)〉... ,l2,l1;r1,r2,...δ(ξ − x) (· · · δ(λ1 − l1)δ(ρ1 − r1) · · · )

+ 〈x(t)〉... ,l3,l2;l1,r1...(−· · · δ(λ2 − l3)δ(λ1 − l2)δ(ρ1 − l1) · · ·

+ · · · δ(λ2 − l3)δ(λ1 − l2)δ(ρ1 − (l1 + r1))δ(ρ2 − r2) · · · )

+ 〈x(t)〉... ,l1,r1;r2,r3...(−· · · δ(λ2 − l1)δ(λ1 − r1)δ(ρ1 − r2) · · ·+ · · · δ(λ2 − l2)δ(λ1 − (l1 + r1))δ(ρ1 − r2)δ(ρ2 − r3) · · · )

...

+ 〈xn(t)〉... ,l2,l1;r1,r2,...δ(ξ − x) (· · · δ(λ1 − l1)δ(ρ1 − r1) · · · )

+ 〈x(t)〉... ,l3,l2;l1+r1,r2...(−· · · δ(λ1 − l2)δ(ρ1 − (l1 + r1))δ(ρ2 − r2) · · ·+ · · · δ(λ1 − l2)δ(ρ1 − l1)δ(ρ2 − r1) · · · )

+ 〈x(t)〉... ,l2,l1+r1;r2,r3...(−· · · δ(λ2 − l2)δ(λ1 − (l1 + r1))δ(ρ1 − r2) · · ·+ · · · δ(λ2 − l1)δ(λ1 − r1)δ(ρ1 − r2) · · · )

...]
. (A.2)
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This equation simplifies further if the distances li and
ri are distributed according to their equilibrium distribu-
tion (3.18), which is certainly the case after the motors
have been running for some time.

Usually one is looking for the quasistationary solution
with

d

dt
〈x(t)〉... ,λ2,λ1;ρ1,ρ2,... = v.

In the special case when 〈xn〉... ,l2,l1;r1,r2,... does not de-
pend on li and ri, the equation simplifies to (3.25). Tak-
ing first-order correlations into account but neglecting the
higher ones leads to equation (3.37).
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15. I. Derényi, T. Vicsek, Proc. Natl. Acad. Sci. USA 93, 6775

(1996).
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18. Z. Csahók, F. Family, T. Vicsek, Phys. Rev. E 55, 5179

(1997).
19. H. Huxley, A. Stewart, H. Sosa, T. Irving, Biophys. J. 67,

2411 (1994).
20. K. Wakabayashi, et al., Biophys. J. 67, 2422 (1994).
21. H. Higuchi, T. Yanagida, Y. Goldman, Biophys. J. 69,

1000 (1995).
22. J. Finer, A. Mehta, J. Spudich, Biophys. J. 68, 291 (1995).
23. D. Riveline, et al., European Biophys. J. in press (1998).
24. S. Leibler, Nature 370, 412 (1994).
25. A. Vilfan, E. Frey, F. Schwabl, (1997), preprint, cond-

mat/9708023.
26. A Java applet graphically visualising the simulation

of our model is accessible on the internet address
http://www.physik.tu-muenchen.de/~avilfan/ecmm/.

27. W. Fenn, J. Physiol. (London) 184, 373 (1924).
28. A. Vilfan, E. Frey, F. Schwabl (unpublished).
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